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Abstract

In this paper, we consider the capacitated dynamic
lot-sizing problem and assume that all conditions
of Wagner-Whitin (1958) model apply except the
capacity restriction. We give three different
formulation of the problem. We relax the capacity
constraint and initiate the Lagrangian procedure.
At each Lagrangian iteration, we solved the
uncapacitated lot-sizing problem by the Wagner-
Whitin method that runs in O(n2) time. We
compare the quality of bounds so obtained. In
particular, we find that the Lagrangian procedure
that modified the setup cost turned out to be
inferior to the Lagrangian procedure that modified
only the holding cost.

Introduction

Production planning is a way of achieving a long
term decision related to what work should be done
in some interval amount of time or a tentative
plan for how much quantity of production should
occur in a certain time interval, called planning
horizon. It is one of the most challenging issues
for a manufacturing industry to have a perfect
production plan as it directly relates to effective
utilization of resources by improving various
parameters including the process flow. It also
optimizes the operational cost and improves the
timely delivery of a product. In short, it provides
improvement in quality and customer satisfaction.

However, production planning in itself is a tedious
and complex job. A production planner faces
various challenges about which product should be
produced with how much should be the quantity
to be produced keeping all available constraints
of production system in mind. Sometimes, the
constraints appear to be tightly bound, making it
very difficult to achieve an effective production
plan. It is an effective utilization of resources to
keep the production goals in a certain amount of
time. Karimi et al. (2003) broadly describes how
the decision making in a production plan can be
classified in the time ranges of long-term, medium-
term and short-term.

Lot-sizing is a middle-term production planning
problem in which decisions related to when and
how much quantity to produce over a planning
horizon is taken. The objective is to determine
the periods in which production happens and the
amount of quantity to be produced while utilizing
the production resources (minimizing the
production, setup and holding cost). Many
techniques and solution procedures were proposed
to achieve lot-sizes of a lot-sizing problem. As
performance of a system and its productivity are
the two most important parameters for a
manufacturing industry to compete in the market,
proper lot-sizing may result in achieving the two.
This thus encourages devoted researchers to work
for developing and improving the solution
procedures of a lot-sizing problem.
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Literature Review

Wagner and Whitin (1958) gave an algorithm to
solve a basic single item uncapacitated lot-sizing
problem. Zoller and Robrade (1988) made a
comparison between various heuristics developed
to solve the single-item dynamic lot-sizing problem.
Bitran and Yanasse (1982) included the capacity
constraint and provided analysis of the problem.
Silver & Meal (1973) also gave a heuristic to solve
the uncapacitated single item lot sizing problem
with a time-varying demand rate. Federgruen &
Tzur (1991), Wagelmans et al. (1992) and Aggarwal
& Park (1993) reviewed the Single-item
uncapacitated lot-sizing problem and present an
exact solution procedure. Federgruen & Tzur (1991)
provide a forward algorithm to solve the general
dynamic lot sizing problem. Wagelmans et al.
(1992) gave an O(nlogn) linear time algorithm for
the Wagner -Whitin model.

Later for the uncapacitated lot sizing problem case
of Wagner–Whitin problem, Aggarwal & Park
(1993) provide an algorithm based on dynamic
programming. The basic contribution of these
works was their attempt to reduce computational
complexity as compared to the Wagner–Whitin
algorithm.

Karmarkar et al. (1987) studies a single item
capacitated lot-sizing problem for both
uncapacitated and capacitated cases. Wolsey (1989)
referred to this problem as lot sizing with startup
costs. Majority of the heuristics for capacitated
lot-sizing problem are based on the formulation
of Manne (1958).

Practical lot sizing problems are known to be some
of the hardest problems to solve. Florian et al.
(1980) elaborate complexity results of the single
item case of problems, while Chen & Thizy (1990)
explain it for multi-item cases. It is shown that
the single item capacitated problem lot-sizing
problem is NP-hard for quite general objective
functions. Capacitated lot sizing problem with
concave cost functions (Wagner & Whitin, 2004)
are solvable in polynomial time. Lot sizing with
convex cost functions and no setup cost is also
solvable in polynomial time. Salomon et al. (1991),
Vanderbeck (1998) and Webster (1999) later gave
some more complexity results of these problems.
Because of the difficulty posed by these problems,
numerous solution techniques have been explored
to solve them.

Thizy & Van Wassenhove (1985) used Lagrangian
relaxation and relaxed the capacity constraints to

decompose the bigger problem into ‘N’ sub
problems; each of the sub problems are of single
item uncapacitated lot sizing. These are solvable
by the Wagner–Whitin algorithm. The solution of
the Lagrangian problem provides a lower bound,
while the upper bound is obtained by first fixing
the setup variables given by the dual solution and
secondly, by obtaining the solution from the
resulting transportation problem.

Lagrangian multipliers are updated using the sub-
gradient optimization procedure Held et al. (1974).
Lozano et al. (1991) applied the Primal dual
approach to solve the Lagrangian relaxation of
capacitated lot-sizing problem. Diaby et al. (1992)
and Hindi (1995) are some other works using
Lagrangian relaxation.

Problem Description

Following are the assumptions:

1. Demand is deterministic and dynamic with
planning horizon finite.

2. Per unit production cost is independent of
production quantity.

3. Each unit item is produced independent from
other units.

4. Lead time is known and is set to zero.

5. Back orders are not allowed.

6. Inventory holding cost is linear and is included
at the end of the holding period.

7. Without loss of generality, beginning and ending
inventories of a planning horizon are set to zero.

8. Production cost is the same in each period.

Formulation of Problem

The basic uncapacitated dynamic lot-sizing problem
is defined as:
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We consider two capacity constraints leading to
three different scenarios of additional capacity
restriction on w-w lot sizing rule:

     (7) 

    (8) 

Formulation F1 = minimize (1), Subject to (2), (3),
(4), (5), (6) and (7)

Formulation F2 = minimize (1), Subject to (2),
(3), (4), (5),(6) and (8)

Formulation F3 = minimize (1), Subject to (2),
(3), (4), (5), (6), (7) and (8)

where,

X
t
: Quantity of item produced in period t

C
t
: Capacity available in period t

y
t
: Setup Variable in period t

d
t
: Available demand in period t

I
t
: Ending inventory in period t

h
t
: Per unit Inventory holding cost in period t

T: Total Number of Periods in a planning Horizon

f
t
: Fixed setup cost incurred in period t

M: Large Number


t
: Lagrangian Multiplier

T: Total number of periods

The Lagrangian Procedure in Brief

Lagrangian relaxation is well appropriate where
constraints can be sub-divided into two categories:

 “Easy” constraints: those with which the entire
problem can be solved easily.

 “Difficult” constraints: those which make the
problem very hard to solve.

The overall idea is to relax the problem. This is
done by get ridding of the “Difficult” constraints,
by removing them and putting them into the
objective function with some assigned weight (the
Lagrangian multiplier). Each weight represents a
penalty to the solution that does not satisfy the
particular constraint.

We are given the following integer linear problem:

Z  = min CT * 

A *   b

D *   d

 integer

Where,

A, D, b, c, d are all having integer entries

Let X be a set := {x integral | D * x  d}

It is assumed that optimization over X can be done
easily, whereas after the addition of the “difficult”
constraints  A * x  b  makes the problem
intractable. Therefore, we introduce a dual variable
for every constraint of A * x  b and  ( 0) is
the vector of dual variables (Lagrangian multipliers)
having the same dimension as that of vector b.
For a fixed  ( 0), consider the relaxed problem

Z () = min CT *  + T * (b — A * ?)

D *   d

 integer

This reduced problem is now solvable to with
Wagner-Whitin Algorithm with fixed values of
Lagrangian Multiplier. With the mentioned
assumptions, it can efficiently compute the optimal
value for the relaxed problem with a fixed vector .

Thus, in Formulation F1, F2 and F3 after applying
Lagrangian relaxation by relaxing the capacity
constraints (5), (6) and (5) & (6) respectively. The
reduced formulations follow:

Objective function:
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F3: Z
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Each subjected to constraint (2), (3), (4), (5) and
(8) respectively.

It is widely known that for every value of  > 0,
the Z

lp
 will give lower bound to the respective

problem. Thus, maximizing 
i>0

 Z
lp

 will give a
better lower bound. For each feasible solution
of Z

lp
 there exists a solution to the main problem

which provides the upper bound. The method to
improve the value of  is through adaptive sub-
gradient optimization. Fisher (1985) and Fisher
(2004) explain the steps of sub-gradient
optimization technique and elaborate information
related to the quality of bounds.

Empirical Investigation

By varying the product demand, setup cost relative
to available capacity, we made 125 different
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problem data sets; 25 X50, 50X75 and 50X100
respectively.

Results & Discussions

We compare each formulation and its significant
difference over the other two by standard t-tests
with a 95% confidence interval. The following are
the findings:

 Formulation 1 significantly differs with
formulation 2 and formulation 3 in number of

iteration steps, duality gap and computation
time respectively.

 Formulation 2 significantly differs from
formulation 3 only in computation time.

Test of Superiority

Out of 125 problem sets, we sort the problem
set according to the least duality gap among
all three formulation for each problems. In
conclusion:

Figure 1: Findings of 25 Problems with 50 Period Each

Figure 2: Findings of 50 Problems with 75 Period Each

Figure 3: Findings of 50 Problems with 100 Period Each

 For 98 problem set, Formulation 1 appears to
be superior.

 For 18 problem set, Formulation 2 appears to
be superior.

 For 9 problem set, Formulation 3 appears to
be superior.

The sole purpose of sorting is to find whether a
significant difference in level of superiority exists
or not. We defined hypothesis and made standard

t-tests for each of the above sets to know how
much one formulation is superior over the other
two.

 For 98 problem set in which Formulation 1 is
superior, there exists significant difference in
number of iteration steps and computation time
from both formulation 2 and formulation 3
respectively.
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 For 18 problem set in which Formulation 2 is
superior, there exists significant difference
between formulation 2 and formulation 1 in
number of iteration steps, duality gap and
computation time. Comparison of formulation
2 with formulation 3 results in significant
difference in number of iteration steps and
computational time.

 For 9 problem set in which Formulation 3 is
superior, there exist significant differences
between formulation 3 and formulation 1 in
number of iteration. However, when compared
to formulation 2, it does not yield any significant
difference under the confidence interval of 95%.

Conclusion

We gave three different formulations for single
item capacitated lot-sizing problem. We relaxed
the capacity constraint using Lagrangian multiplier.
We solved the relaxed problem through adaptive
sub-gradient optimization technique to achieve
lower bound. After varying the product demand,
setup cost relative to available capacity, we formed
125 different data sets. The overall finding is that
Formulation 1 appears superior in 98 problems.
It also gives the tightest bound in less number of
iterations among the three. Also, the output is
achieved in less computational time. Moreover,
Formulation 2 is superior in 18 problem instances
and formulation 3 is superior in 9 problem
instances. This paper intends to provide
information for future research.
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